МКОУ «МАЛОДЕРБЕТОВСКАЯ ГИМНАЗИЯ ИМ.Б.Б.БАДМАЕВА» МРМО РК

«Рассмотрено»

«Согласовано»

«Утверждено»

Протокол

Зам. директора по ВР

Директор МКОУ

педагогического совета

/Санджиева В.В./

«Малодербетовская гимназия

№ 1 от 28.08.2021г.

от.30.08.2021г.

им.Б.Б.Бадмаева» МРМО РК Бастаева В.Б.

Приказ № 125 от 31.08.2021г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

научно-технической направленности

«РОБОТОТЕХНИКА»

2021-2022 учебный год

Возраст обучающихся: 8-10 лет

Срок реализации программы: 1 год

Количество часов в год: 68ч.

Составитель: Барангов Андрей Борисович, руководитель кружка «Робототехника»

с.Малые Дербеты, 2021г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Предлагаемая программа разработана в рамках федерального проекта «Успех каждого ребенка» нацелена на развитие личности обучающихся средствами технического творчества на основе учета их индивидуальных особенностей, способностей и склонностей является общеразвивающей и относится к научно-технической направленности, по функциональному предназначению – общеразвивающая.

Нормативно-правовое основание разработки программы

- 1. Федеральный Закон от 29.12.2012г. № 273-ФЗ «Об образовании в Российской Федерации» (далее Φ 3);
- 2. Федеральный закон РФ от 24.07.1998 № 124-ФЗ «Об основных гарантиях прав ребенка в Российской Федерации» (в редакции 2013 г.);
- 3. Стратегия развития воспитания в РФ на период до 2025 года (распоряжение Правительства РФ от 29 мая 2015 г. № 996-р);
- 4. Постановление Главного государственного санитарного врача РФ от 04.07.2014г. № 41 «Об утверждении СанПиН 2.4.4.3172-14 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей» (далее СанПиН);
- 5. Концепция развития дополнительного образования детей (распоряжение Правительства РФ от 04.09.2014г. № 1726-р) (далее Концепция);
- 6. Приказ Министерства просвещения Российской Федерации от 09.11.2018 г. № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам» (далее Порядок);
- 8. Приказ Министерства просвещения Российской Федерации от 03.09.2019 № 467 «Об утверждении Целевой модели развития региональных систем дополнительного образования детей»;
 - 9. Устав МКОУ "Малодербетовская гимназия им.Б.Б.Бадмаева" МРМО РК;
 - 10. Локальные акты МКОУ "Малодербетовская гимназия им. Б. Б. Бадмаева" МРМО РК.

Актуальность

В Федеральной целевой программе «Развитие дополнительного образования детей в Российской Федерации до 2020 года», а также в Концепции развития дополнительного образования детей в РФ подчёркивается важность разработки инновационных образовательных программ в области научнотехнического творчества детей и создания необходимых условий для занятий детей техническими видами деятельности.

Дополнительная общеобразовательная программа «Робототехника» позволяет объединить конструирование и программирование в одном курсе и привить подрастающему поколению интерес к техническому творчеству.

Новизна

Новизна программы заключается в занимательной форме знакомства обучающихся <u>с основами робототехники</u>, радиоэлектроники и программирования. Избегая сложных математических формул, на практике, через эксперимент, обучающиеся постигают физику процессов, происходящих в роботах, включая двигатели, датчики, источники питания и микроконтроллеры. Эти занятия дают детям представление о роботостроении и IT-технологиях, что является ориентиром в выборе будущей профессии. Проектный метод является основной формой обучения.

Педагогическая целесообразность

Дополнительная общеразвивающая программа «Робототехника» является целостной и непрерывной в течение всего процесса обучения, и позволяет детям раскрыть способности к техническому творчеству и изобретательству, что позднее поможет успешно самореализоваться. В процессе конструирования и программирования, обучающиеся получают дополнительное образование области физики, механики, электроники и информатики.

Преподавание курса предполагает использование компьютеров и специальных интерфейсных блоков совместно с конструкторами. Важно отметить, что компьютер используется как средство управления моделью; его использование направлено на составление управляющих алгоритмов для собранных роботов. Обучающиеся получают представление об особенностях составления программ управления, автоматизации механизмов, моделировании работы систем.

Обучение по данной программе позволяет обучающимся:

- совместно обучаться в рамках одной команды;
- распределять обязанности в своей команде;
- проявлять повышенное внимание культуре и этике общения;
- проявлять творческий подход к решению поставленной задачи;
- создавать модели реальных объектов и процессов;
- видеть реальный результат своей работы.

Отличительные особенности

Реализация программы осуществляется с использованием методических пособий, специально разработанных фирмой "LEGO" для преподавания технического конструирования на основе своих конструкторов. Настоящий курс предлагает использование образовательных конструкторов LEGO WeDo как инструмента для обучения школьников конструированию, моделированию и компьютерному управлению на занятиях по робототехнике. Простота в построении модели в сочетании с большими конструктивными возможностями конструктора позволяют детям в конце занятия увидеть сделанную своими руками модель, которая выполняет поставленную ими же

самими задачу. При построении модели затрагивается множество проблем из разных областей знания – от теории механики до психологии.

Адресат программы

Группа комплектуется из детей 8-10 лет. Для этой возрастной категории характерно формирование мотивов самосознания, взглядов, убеждений, мировоззрений. Происходит функциональное совершенствование мозга - развивается аналитико-синтетическая функция коры. Развивается логическая память и теоретическое мышление. Дети этого возраста направлены на познание себя, самокритичны. Вследствие этого необходимо разработать систему мотивации и поощрений, а также применять такие формы работы, которые направлены на выражение индивидуальности обучающегося.

Уровень, объем и сроки реализации программы

Уровень программы – ознакомительный. Общее количество часов –68. Срок реализации 1 год.

Формы обучения и режим занятий

Форма обучения – очная. Общий объём материала рассчитан на 68 часов. Недельная нагрузка на обучающегося — 2 часа. Занятия проходят в групповой форме. Предусмотрены следующие формы работы: проектирование, моделирование, конструирование. Задания подбираются с учётом индивидуальности каждого ребенка, что обеспечивает успешность их выполнения.

Особенности организации образовательного процесса

Программа предполагает соединение теоретических и практических занятий обучения в единое целое, что обеспечивает единое решение познавательных, практических задач.

Состав группы – постоянный.

Наполняемость учебных групп - до 12 человек.

Цель: создание условий для раскрытия способностей к техническому творчеству и развитию задатков инженерного мышления обучающихся через приобщение к робототехнике.

Задачи:

Воспитательные:

- воспитывать настойчивость, целеустремленность, аккуратность, самостоятельность, ответственность, умение работать в коллективе.

Развивающие:

- развивать логическое, конструкторское и пространственное мышление, умение планировать, анализировать и корректировать свою деятельность, работать с различными источниками информации.

Обучающие:

- формировать знания и умения в области разработки и редактирования трехмерных компьютерных моделей;
 - формировать навыки разработки и анализа сложных механизмов;
 - формировать устойчивую мотивацию к дальнейшему изучению робототехники.

Планируемые результаты:

В процессе реализации программы «Робототехника» предполагаются следующие результаты: **Личностные результаты**

- критическое отношение к информации и избирательность её восприятия;
- осмысление мотивов своих действий при выполнении заданий;
- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремленности, умения преодолевать трудности;
- развитие самостоятельности суждений, независимости и нестандартности мышления;

- воспитание чувства справедливости, ответственности;
- начало профессионального самоопределения, ознакомление с миром профессий, связанных с робототехникой.

Метапредметные результаты

- принятие учебной задачи, планирование учебной деятельности, осуществление итогового и пошагового контроля реализации поставленной задачи;
- адекватное восприятие оценочных суждений педагога и товарищей;
- различение способа и результата действия;
- внесение коррективов в действия с учетом сделанных ошибок;
- постановка в сотрудничестве с педагогом новых учебных задач;
- проявление познавательной инициативы в учебном сотрудничестве;
- осуществление поиска информации; использование средств информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- осуществление анализа объектов с выделением существенных и несущественных признаков; проведение сравнения, классификации по заданным критериям;
- установление аналогии, причинно-следственных связей;
- синтезирование, составление целого из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
- аргументирование своей точки зрения, умение вести диалог, признавать возможность существования различных точек зрения и права каждого иметь свою;
- планирование учебное сотрудничества с педагогом и сверстниками.

Предметные результаты:

Обучающийся должен:

знать:

- правила безопасной работы на занятии;
- основные компоненты конструкторов LEGO WeDo 2.0;
- конструктивные особенности различных моделей, сооружений и механизмов;
- компьютерную среду, включающую в себя графический язык программирования;
- виды подвижных и неподвижных соединений в конструкторе;
- конструктивные особенности различных роботов;
- основные алгоритмические конструкции, этапы решения задач с использованием ЭВМ.

уметь:

- использовать основные алгоритмические конструкции для решения задач;
- конструировать различные модели; использовать созданные программы;
- применять полученные знания в практической деятельности.

Содержание программы

1. Введение

Знакомство с планом работы объединения. Знакомство с конструктором Lego WeDo 2.0 и его деталями (смартхаб, мотор, датчик движения, датчик наклона). Организация рабочего места. Техника безопасности.

2. Мотор и ось. Блок «Начало»

Теория: Что делает блок «Мотор по часовой стрелке»? Какую функцию выполняет блок «Начало»?

Практика: Практическая работа

Презентация проекта

3. Зубчатые колёса. Блок цикл.

Теория: Какую функцию выполняют зубчатые колёса? Блок «Цикл»

Практика: Практическая работа

Презентация проекта

4. Зубчатая передача. Блок «Включить мотор на».

Теория: Знакомство с понижающей и повышающей зубчатыми передачами. Понятия ведущего и ведомого колеса. Промежуточное зубчатое колесо. Какую функцию выполняет блок «Включить мотор на»

Практика: Сборка модели «Автомобиль».

Презентация проекта

5. Шкивы и ремни. Ременная передача.

Теория: Повышающий и понижающий шкив. Знакомство с ременной передачей. Перекрёстная ременная передача. Снижение и увеличение скорости.

Практика: Сборка и программирование моделей «Вездеход», «Грузовик».

Презентация проекта

6. Датчик наклона. Блок «Ждать».

Теория: Как работает датчик наклона? Какие блоки программы работают с датчиком наклона?

Практика: Сборка и программирование модели «Научный вездеход Майло»

Презентация проекта

7. Датчик движения.

Теория: Какую функцию выполняет датчик движения?

Практика: Конструирование и программирование модели «Научный вездеход Майло».

Презентация проекта

8. Коронное зубчатое колесо

Теория: Знакомство с коронными зубчатыми колёсами. Функции коронных зубчатых колёс.

Практика: Сборка и программирование моделей «Вертолёт», «Вентилятор»

Презентация проекта

9. Червячная зубчатая передача.

Теория: Знакомство с червячной зубчатой передачей. Функции червячного зубчатого колеса.

Практика: Конструирование и программирование моделей «Погрузчик», «шлагбаум».

10. Скорость

Теория: Факторы, влияющие на скорость. Как заставить машину ехать быстрее?

Практика: Гоночный автомобиль

11. Тяга. Колебания.

Теория: Что заставляет объекты двигаться? Уравновешенные и неуравновешенные силы, сила трения. Базовая модель «Колебания»

Практика: Сборка и программирование моделей «Дельфин», «Робот - тягач».

Презентация проекта

12. Зубчатая рейка. Толчок.

Теория: Знакомство с деталью «Зубчатая рейка», её функции. Базовая модель «Толчок».

Практика: Сборка и программирование моделей «Гусеница», «Богомол»

Презентация проекта

13. Захват

Теория: Изучение базовой модели «Захват»

Практика: Сборка и программирование моделей «Роботизированная рука»,

«Змея».

Презентация проекта

14. Ходьба

Теория: Изучение базовой модели «Ходьба».

Практика: Сборка и программирование моделей «Лягушка» «Горилла»

Презентация проекта.

15. Катушка

Теория: Изучение базовой модели «Катушка».

Практика: Сборка и программирование моделей «Спасательный вертолёт» «Паук».

Презентация проекта

16. Блок «Прибавить к экрану»

Теория: Какую функцию выполняет блок «Прибавить к экрану»? Где можно применить программу счёта?

Практика: Составление программ отчёта времени.

Презентация проекта

17. Блок «Вычесть из экрана»

Теория: Знакомство с блоком «Вычесть из экрана».

Практика: Составление программ прямого и обратного счёта.

Презентация проекта

18. Блок «Начать при получении письма»

Теория: Для чего нужен блок «Начать при получении письма»?

Практика: Составление программ с использованием блока «Начать при получении письма»

Презентация проекта

19. Прочность конструкции. «Рычаг». «Блок «Начать нажатием клавиши»

Теория: Как устроены сейсмоустойчивые конструкции? Знакомство с механизмом «Рычаг».

Практика: Сборка и программирование моделей «Землетрясение» «Динозавр»

Презентация проекта

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

№	Наименование разделов и тем	Теория	Практика	Общее количество часов
Ι	Управление датчиками и мотором. Механика	10	18	28
1	Введение. Мотор и ось. Блок «Начало»	1	1	2
2	Зубчатые колёса. Блок «Цикл»	1	1	2
3	Зубчатая передача. Вход «Число». Блок «Включить мотор на»	1	2	3
4	Шкивы и ремни. Ременная передача.		2	3
5	Творческая работа		2	2
6	Датчик наклона. Блок «Датчик наклона». Блок «Ждать»	1	2	3
7	Датчик движения. Блок «Звук»	1	2	3
8	«Коронное зубчатое колесо»	1	2	3
9	Червячная зубчатая передача	1	2	3
10	Промежуточная аттестация	1	1	2
11	Творческая работа	1	1	2
II	Программирование LEGO WeDo	12	28	40
12	Скорость	1	1	2
13	Тяга, колебания	2	4	6
14	Творческие проекты	-	2	2
15	Соревнования роботов. «Самый быстрый» «Самый сильный»	_	2	2
16	Зубчатая рейка. Толчок	1	3	4
17	Захват	1	3	4
18	Ходьба	1	2	3
19	Творческие проекты	-	2	2
20	Соревнования шагающих роботов	-	2	2
21	Катушка	1	1	2
22	Блок «Прибавить к экрану»	1	1	2
23	Блок «Вычесть из экрана»	1	1	2
24	Блок «Начать при получении письма»	1	1	2
25	Прочность конструкции. «Рычаг». «Блок «Начать нажатием клавиши»	1	2	3
26	Итоговая аттестация	1	1	2
	ОТОТИ	22	46	68

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№	Дата	Тема занятия	Кол-во часов
1	7.10	Введение. Мотор и ось. Блок «Начало»	2
2	14.10	Зубчатые колёса. Блок «Цикл»	2
3	21.10	Зубчатая передача. Вход «Число». Блок «Включить мотор на»	2
4	28.10	Зубчатая передача. Вход «Число». Блок «Включить мотор на». Шкивы и ремни. Ременная передача.	2
5	4.11	Шкивы и ремни. Ременная передача	2
6	11.11	Творческая работа	2
7	18.11	Датчик наклона. Блок «Датчик наклона». Блок «Ждать»	2
8	25.11	Датчик наклона. Блок «Датчик наклона». Блок «Ждать». Датчик движения. Блок «Звук»	2
9	2.12	Датчик движения. Блок «Звук»	2
10	9.12	«Коронное зубчатое колесо»	2
11	16.12	«Коронное зубчатое колесо». Червячная зубчатая передача	2
12	23.12	Творческая работа	2
13	30.12	Промежуточная аттестация	2
14	6.01	Скорость	2
15	13.01	Тяга, колебания	2
16	20.01	Тяга, колебания	2
17	27.01	Тяга, колебания	2
18	3.02	Творческие проекты	2
19	10.02	Соревнования роботов. «Самый быстрый» «Самый сильный»	2
20	17.02	Зубчатая рейка. Толчок	2
21	24.02	Зубчатая рейка. Толчок	2
22	2.03	Захват	2
23	9.03	Захват	2
24	16.03	Ходьба	2
25	23.03	Ходьба	2
26	30.03	Творческие проекты	2
27	6.04	Соревнования шагающих роботов	2
28	13.04	Катушка	2
29	20.04	Блок «Прибавить к экрану»	2
30	27.04	Блок «Вычесть из экрана»	2
31	4.05	Блок «Начать при получении письма»	2
32	11.05	Прочность конструкции. «Рычаг». «Блок «Начать нажатием клавиши»	2
33	18.05	Прочность конструкции. «Рычаг». «Блок «Начать нажатием клавиши»	2
34	25.05	Итоговая аттестация	2
		ОТОТИ	68

УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Материально-технические условия:

программирования робототехнических Компьютерный класс момент средств, настройки программирования контроллеров конструкторов, самих конструкторов, отладки программ, проверка совместной работоспособности программного продукта модулей конструкторов LEGO.

Наборы конструкторов:

- LEGOWEDO 2:0 2 шт.;
- LEGOMindstormsEV3 Education 3 IIIT.:
- программный продукт по количеству компьютеров в классе;
- поля для проведения соревнования роботов –3 шт.;
- зарядное устройство для конструктора 2 шт.
- ящик для хранения конструкторов (по объёму).

Информационно-методические условия:

Обеспечение программы предусматривает наличие следующих методических видов продукции:

- электронные учебники;
- экранные видео лекции, Screencast (экранное видео -записываются скриншоты (статические кадры экрана) в динамике);
- видео ролики;
- информационные материалы на сайте, посвященном данной дополнительной образовательной программе;
- мультимедийные интерактивные домашние работы, выдаваемые обучающимся на каждом занятии; По результатам работ всей группы будет создаваться мультимедийное интерактивное издание, которое можно будет использовать не только в качестве отчетности о проделанной работе, но и как учебный материал для следующих групп обучающихся.

Кадровое обеспечение

Программу может реализовывать педагог дополнительного образования, имеющий педагогическое профильное образование, в совершенстве владеющий навыками руководства учебно-творческой деятельностью учащихся и методикой преподавания предмета.

Формы подведения итогов реализации программы

Мониторинг результатов обучения включает в себя диагностику знаний обучающихся, их оценку в соответствии с поставленными целями обучения и корректировку ошибок.

Регулярное отслеживание результатов может стать основой стимулирования, поощрения ребенка за его труд, старание. Каждую оценку нужно прокомментировать, показать, в чем прирост знаний и мастерства ребенка — это поддержит его стремление к новым успехам.

В ходе реализации проектов LEGO WeDo 2.0 существует такие способы отслеживания и оценки успеваемости учащихся как:

1) Сетка для записи отдельных случаев

Для каждого учащегося или группы можно использовать сетку категорий наблюдения для следующих целей:

- оценка результатов учащегося на каждом этапе процесса;
- предоставление конструктивной обратной связи для содействия развитию учащихся
- 2) Сетка категорий наблюдения
- 3) Страницы документации
- 4) Утверждения для самостоятельной оценки своих знаний

Виды аттестации	Показатели аттестации				
Входящий контроль	Проводится перед началом освоения программы с целью определения уровня подготовленности к занятиям по программе.				
Текущий контроль	Текущий контроль успеваемости носит безотметочный характер и предполагает качественную характеристику (оценку) сформированности у обучающихся соответствующих компетенций				
Промежуточная аттестация	определение уровня достижения планируемых предметных и личностных результатов в процессе освоения образовательной программы				
Итоговая аттестация	подтверждение уровня достигнутых предметных результатов по итогам освоения образовательной программы				

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Методы обучения: *диалогический* – предполагает объяснение теоретического материала в виде познавательных бесед. Беседы сопровождаются демонстрацией электронных презентаций и действующих моделей роботов; *проектный* (творческий) – применяется при реализации учащимися собственных творческих проектов.

- Формирование и совершенствование умений и навыков (изучение нового материала, практика).
- Познавательный (восприятие, осмысление и запоминание учащимися нового материала с привлечением наблюдения готовых примеров моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов).
- Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей).
- Систематизирующий (беседа по теме, составление систематизирующих таблиц, графиков, схем и т.д.).
- Групповая работа (используется при совместной сборке моделей, а также при разработке проектов).
- Индивидуальная работа.

ПЕДАГОГИЧЕСКИЕ ТЕХНОЛОГИИ:

- технология группового обучения
- технология коллективного взаимообучения
- технология развивающего обучения
- технология игровой деятельности
- здоровьесберегающие технологии

ФОРМЫ ОРГАНИЗАЦИИ УЧЕБНОГО ЗАНЯТИЯ:

- защита проектов
- открытые занятия
- практические занятия
- выставки работ

Алгоритм учебного занятия: каждое занятие начинается с организационного этапа. Повторение и закрепление пройденного материала посредством разбора деталей конструктора. Постановка проблемной ситуации. Создание заданной модели. Программирование готовой модели. Защита проекта. Рефлексия. На различных этапах урока используются разные формы организации деятельности обучающихся.

Основные этапы разработки проекта:

- Обозначение темы проекта.
- Цель и задачи представляемого проекта.
- Разработка механизма на основе конструкторов.
- Составление программы для работы механизма.
- Тестирование модели, устранение дефектов и неисправностей.

При разработке и отладке проектов учащиеся делятся опытом друг другом, что очень эффективно влияет на развитие познавательных, творческих навыков, а также самостоятельность школьников.

Традиционными формами проведения занятий являются: беседа рассказ, проблемное изложение материала. Основная форма деятельности учащихся — это самостоятельная интеллектуальная и практическая деятельность учащихся, в сочетании с групповой, индивидуальной формой работы школьников.

Дидактические материалы:

http://robot.ipksko.kz/ru/lego/instructions/expansion

http://itrobo.ru/robototehnika/shemy-robotov.html

https://www.exoforce.ru/lego-downloads

Комплект заданий «Первые механизмы»

Комплект заданий «Простые механизмы»

Комплект заданий «Инженерные проекты»

Список использованных источников и литературы для педагогов

- 1. Дружинин В.Н. Психология общих способностей СПБ.: Питер, 2002.- 157-209 с.
- 2. Григорьев Д. В., Степанов П. В. « Внеурочная деятельность школьников»- М., Просвещение, 2010.
- 3. Каширин Д.А., Федотова Н.Д. «Основы робототехники VEX IQ, образовательный роботехнический модуль (начальный уровень)» М., Экзамен, 2016.
- 4. Комарова Л. Г. «Строим из LEGO» (моделирование логических отношений и объектов реального мира средствами конструктора LEGO). М.; «ЛИНКА ПРЕСС», 2001.
- 5. Концепция развития дополнительного образования детей от 04.09.2014.
- 6. Овсяницкая Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д.. Курс программирования робота Lego Mindstorms EV3 в среде EV3: основные подходы, практические примеры, секреты мастерства. Челябинск: Мякотин И.В.. 2014.
- 7. Симановский А.Э. Развитие творческого мышления детей. Популярное пособие для родителей и педагогов. /Ярославль: «Академия развития», 2006. –11-27с.
- 8. Тамберг Ю.Г. Развитие творческого мышления ребёнка. СПб.: Речь, 2002. 30-75 с.
- 9. LEGO Education WeDo Teacher's Guide

Интернет – ресурсы:

http://int-edu.ru

http://7robots.com/

http://www.spfam.ru/contacts.html

http://robocraft.ru/

http://iclass.home-edu.ru/course/category.php?id=15

/ http://insiderobot.blogspot.ru/

https://sites.google.com/site/nxtwallet/